

Tosoh F-Tech Inc. developed a process for the largescale production of (Trifluoromethyl)trimethyl-silane (CF₃-TMS, Ruppert's Reagent) which will become a first choice for the introduction of CF₃ groups in pharmaceutical and electronics industries. The specification of CF₃-TMS is shown in Table 1. CF₃-TMS is a nucleophilic trifluoromethylating reagent and in this

review we introduce the character of CF_3 -TMS and summarize the synthesis of CF_3 group containing compounds via nucleophilic trifluoromethylation reactions utilising CF_3 -TMS.

Table 1 The specification of CF₃TMS

	Specification
Appearance	Clear Liquid
Purity	>99.0% (GC%)
Water	< 500ppm (Karl Fischer Method)

1) Physical Properties

 CF_3 -TMS is a stable clear liquid. However, it generates CF_3 -with a catalytic amount of F⁻ ion. Since CF_3 -TMS is highly flammable (Flash Point <-20°C), it should be stored cool and in a well ventilated area and kept away from heat, sparks and open fire. The physical properties are shown in Table 2.

Table 2 Thyeleal properties	
Chemical Structure	CF ₃ Si(CH ₃) ₃
CAS Number	81290-20-2
Appearance	Clear Liquid
Molecular Weight	142.2
Boiling Point	57°C
Specific Density	0.9626 at 20°C
Refractive Index	1.3304 at 20°C
Flash Point	-32°C (Tag closed cup)
Auto ignition Point	>260°C

Table 2 Physical properties of CF₃TMS

2) Trifluoromethylation

The Si-CF3 bond is weak due to the high electron withdrawing property of the CF3 group and it is easily cleaved with catalytic amount of F^- ion. This generates CF3⁻ as the nucleophile which attacks the electrophilic carbon. Aldehydes and ketones are very susceptable to nucleophilic attack by CF₃-TMS. Esters and amides show less reactivity. The following reactions are typical for CF₃-TMS with different substrates.

2-1) Aldehydes and ketones CF3-TMS reacts quantitatively with aldehydes and ketones in the presence of catalytic amount of F- to give corresponding alcohols.¹⁾ HO CF3 TBAF + CF₃SiMe₃ – Table 3 Trifluoromethylation of aldehyde and ketones Product Substrate Yield(%) СНО HO. CF₃ 85 HO. ,ČF₃ 74 CF₃ 77 92 ÓН HO. CF₃ сно 80

2-2) Enone

Trans enones react with CF_3 -TMS in the presence of catalytic amount of Cesium Fluoride to give trifluoromethylated allylic alcohols.²⁾

TOSOH F-TECH, INC.

2-3) Ester

Esters react with CF_3 -TMS the presence of stoichiometric amount of F^- to give corresponding trifluorom ethylketones.³⁾

Table 5 Trifluoromethylation of esters

2-4) Aromatics

The transient trifluoromethylcopper species is generated *in situ* from CF_3 -TMS in the presence of cuprous iodide and potassium fluoride; reaction with aryl iodies gives trifluoromethylated aryl compounds.⁴⁾

2-5) Miscellaneous

Trifluoromethylation of carbohydrates

Trifluoromethylation of 3-oxo-glucose proceeds with CF₃-TMS and gives the L-*allo* in 100% selectivity, although CF₃MgBr gives the L-*allo* and D-*gluco* in the ratio of 75:25, respectively.⁵⁾

Preparation of trifluoromethyl-cycloalkenones

Oxidation with PCC of tertiary alcohols obtained from trifluoromethylation of conjugated cycloenones give trifluoromethyl-cycloalkenones.⁶⁾

Reaction with imines

The reaction of imines with CF_3 -TMS in the presence of CsF and TMS-imidazole gave the following products in moderate yields.⁷⁾

Preparation of trifluoromethyl acetamides

In situ treatment of trifluoromethylated alcohols in acetonitril with excess H_2SO_4 and acetic acid give trifluoromethylated amides.⁸⁾

_	0			
		F ₃ C NHCOCH ₃	68	
	OMe	F ₃ C NHCOCH ₃ OMe	66	
	Me	F ₃ C NHCOCH ₃ Me	81	
			57	
	CH ₃	CH ₃	54	
-				

- 2. The high chemo and regio selectivity and mild reaction conditions of F⁻ catalyzed trifluoromethylation allow reactions with complex substrates without significant formation of side products.
- 3. The methodology provides easy acces to novel pharmaceutical and electronic compounds carrying a CF3 group.

4) Literature

- 1) G.K.S. Prakash, R. Krishnamurti, G.A.Olah, J.Am.Chem.Soc., 111, 393(1989)
- 2) R.P. Singh, R.L. Kirchmeier, J.M. Shreeve, Org. Lett. 1, 1047(1999)
- 3) J. Wiedemann, T. Heiner, G. Mloston, G.K.S. Prakash, G.A. Olah, Angew. Chem. Int. Ed., 37, 820(1998)
- 4) T. Fuchikami, M.Urata, JP 1991-218325
- 5) S. Lavaire, R. Plantier-Royon, C. Portella, *Tetrahedron Asymmetry*, 9, 213(1998)
- 6) G.K.S. Prakash, E.C. Tango, T. Mathew, Y.D. Venkar, G.A.Olah, J.Fluorine Chem., 101, 199(2000)
- 7) J.C. Blazejewski, E. Anselm, M.P. Wilmshurst, Tetrahedron Lett., 40, 5475(1999)
- 8) E.C.Tango, G.K.S. Prakash, G.A.Olah, Synlett 1997, 1193